Code: 20CE6601

III B.Tech - II Semester - Regular Examinations - JUNE 2023

ADVANCED PAVEMENT MATERIALS (HONORS in CIVIL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max.			
					Marks			
	UNIT-I							
1	a)	What are the functions of road pavement?	L5	CO1	7 M			
		Draw a neat sketch showing the structural						
		functions of a pavement.						
	b)	Enumerate the role of material	L4	CO1	7 M			
		characterization in pavement design?						
	OR							
2	a)	What are the factors affecting the	L1	CO1	7 M			
		performance of pavement? Explain in detail.						
	b)	What are the performance measures of	L2	CO1	7 M			
		pavement? List out the types of pavement						
		evaluation methods.						
UNIT-II								
3	a)	State the functions of sub grade. Give brief	L4	CO2	7 M			
		specifications of soil including unit weight and						
		compaction requirements of soil in sub grade.						

	b)	Driefly discuss the IC soil elegification	Τ 1	CO2	7 1/		
	b)	Briefly discuss the I.S soil classification	L4		7 M		
		systems.					
OR							
4	a)	List out the factors which control the	L4	CO2	7 M		
		strength characteristics of soil. Describe the					
		procedure of CBR test in the laboratory.					
	b)	What are deformation properties of soil?	L2	CO2	7 M		
		and explain about the factors affecting sub					
		grade soil strength.					
UNIT-III							
5	a)	Explain the desirable properties of	L2	CO3	7 M		
		aggregates to be used in pavement					
		construction.					
	b)	List the various tests conducted on road	L4	CO3	7 M		
		aggregates in order to ascertain its					
		suitability and indicate the desirable values					
		of the test results.					
OR							
6	a)	What are the methods of designing	L1	CO3	9 M		
		aggregate gradation? Discuss in detail.					
	b)	Write a note on aggregate blending to meet	L3	CO3	5 M		
		the specified gradation.					
UNIT-IV							
7	a)	Discuss the different types of geosynthetics	L4	CO4	7 M		
		in road construction?	2.		, 1,1		
		III TOMO CONSTITUTORI.					
	b)	Explain in detail about the uses of	1.2	CO4	7 M		
		geosynthetics in pavement structures.			/ 141		
		geosymmetres in pavement suuctures.					

OR								
8	a)	Write the differences between geogrids and	L4	CO4	7 M			
		Geocells.						
	b)	How can geosynthetics improve	L4	CO4	7 M			
		sustainability of roads? Explain in detail.						
UNIT-V								
9	a)	Discuss about advanced pavement materials	L3	CO5	7 M			
		for sustainable transportation Infrastructure						
	b)	What are the functions and applications of	L1	CO5	7 M			
		fly ash in road construction						
OR								
10	a)	Explain about the properties of GGBS.	L2	CO5	5 M			
	b)	Write short notes on i) quarry dust ii) Rice	L4	CO5	9 M			
		husk dust iii) Brick ash in road construction						